60 research outputs found

    Novel Mechanisms of Sildenafil in Pulmonary Hypertension Involving Cytokines/Chemokines, MAP Kinases and Akt

    Get PDF
    Pulmonary arterial hypertension (PH) is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT)-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK) phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt) pathway and nuclear factor (NF)-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-1α, lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension

    Compact intense extreme-ultraviolet source

    Get PDF

    Severity of degenerative lumbar spinal stenosis affects pelvic rigidity during walking

    Get PDF
    To understand the role of compensation mechanisms in the development and treatment of symptomatic degenerative lumbar spinal stenosis (DLSS), pelvic stability during walking should be objectively assessed in the context of clinical parameters.; To determine the association among duration of symptoms, lumbar muscle atrophy, disease severity, pelvic stability during walking, and surgical outcome in patients with DLSS scheduled for decompression surgery.; Prospective observational study with intervention.; Patients with symptomatic DLSS.; Oswestry Disability Index score; duration of symptoms; lumbar muscle atrophy; severity grade; pelvis rigidity during walking.; Patients with symptomatic DLSS were analyzed on the day before surgery and 10 weeks and 12 months postoperatively. Duration of symptoms was categorized as: <2years, <5years, and >5years. Muscle atrophy at the stenosis level was categorized according to Goutallier. Bilateral cross-sectional areas of the erector spinae and psoas muscles were quantified from magnetic resonance imaging. Stenosis grade was assessed using the Schizas classification. Pelvic tilt was measured in standing radiographs. Pelvic rigidity during walking was assessed as root mean square of the pelvic acceleration in each direction (anteroposterior, mediolateral, and vertical) normalized to walking speed measured using an inertial sensor attached to the skin between the posterior superior iliac spine.; Body mass index but not duration of symptoms, lumbar muscle atrophy, pelvic rigidity, and stenosis grade explained changes in Oswestry Disability Index from before to after surgery. Patients with greater stenosis grade had greater pelvic rigidity during walking. Lumbar muscle atrophy did not correlate with pelvic rigidity during walking. Patients with lower stenosis grade had greater muscle atrophy and patients with smaller erector spinae and psoas muscle cross-sectional areas had a greater pelvis tilt.; Greater pelvic rigidity during walking may represent a compensatory mechanism of adopting a protective body position to keep the spinal canal more open during walking and hence reduce pain. Pelvic rigidity during walking may be a useful screening parameter for identifying early compensating mechanisms. Whether it can be used as a parameter for personalized treatment planning or outcome prognosis necessitates further evaluation

    Limited Tumor Tissue Drug Penetration Contributes to Primary Resistance against Angiogenesis Inhibitors

    Get PDF
    Resistance mechanisms against antiangiogenic drugs are unclear. Here, we correlated the antitumor and antivascular properties of five different antiangiogenic receptor tyrosine kinase inhibitors (RTKIs) (motesanib, pazopanib, sorafenib, sunitinib, vatalanib) with their intratumoral distribution data obtained by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). In the first mouse model, only sunitinib exhibited broad-spectrum antivascular and antitumor activities by simultaneously suppressing vascular endothelial growth factor receptor-2 (VEGFR2) and desmin expression, and by increasing intratumoral hypoxia and inhibiting both tumor growth and vascularisation significantly. Importantly, the highest and most homogeneous intratumoral drug concentrations have been found in sunitinib-treated animals. In another animal model, where - in contrast to the first model - vatalanib was detectable at homogeneously high intratumoral concentrations, the drug significantly reduced tumor growth and angiogenesis. In conclusion, the tumor tissue penetration and thus the antiangiogenic and antitumor potential of antiangiogenic RTKIs vary among the tumor models and our study demonstrates the potential of MALDI-MSI to predict the efficacy of unlabelled small molecule antiangiogenic drugs in malignant tissue. Our approach is thus a major technical and preclinical advance demonstrating that primary resistance to angiogenesis inhibitors involves limited tumor tissue drug penetration. We also conclude that MALDI-MSI may significantly contribute to the improvement of antivascular cancer therapies

    Reciprocal relationships between trajectories of depressive symptoms and screen media use during adolescence

    Get PDF
    Adolescents are constantly connected with each other and the digital landscape through a myriad of screen media devices. Unprecedented access to the wider world and hence a variety of activities, particularly since the introduction of mobile technology, has given rise to questions regarding the impact of this changing media environment on the mental health of young people. Depressive symptoms are one of the most common disabling health issues in adolescence and although research has examined associations between screen use and symptoms of depression, longitudinal investigations are rare and fewer still consider trajectories of change in symptoms. Given the plethora of devices and normalisation of their use, understanding potential longitudinal associations with mental health is crucial. A sample of 1,749 (47% female) adolescents (10-17 years) participated in six waves of data collection over two years. Symptoms of depression, time spent on screens, and on separate screen activities (social networking, gaming, web browsing, TV/passive) were self-reported. Latent growth curve modelling revealed three trajectories of depressive symptoms (Low-Stable, High-Decreasing, and Low-Increasing) and there were important differences across these groups on screen use. Some small, positive associations were evident between depressive symptoms and later screen use, and between screen use and later depressive symptoms. However, a Random Intercept Cross Lagged Panel Model revealed no consistent support for a longitudinal association. The study highlights the importance of considering differential trajectories of depressive symptoms and specific forms of screen activity to understand these relationships

    Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions

    Get PDF
    Farmland is a major land cover type in Europe and Africa and provides habitat for numerous species. The severe decline in farmland biodiversity of the last decades has been attributed to changes in farming practices, and organic and low-input farming are assumed to mitigate detrimental effects of agricultural intensification on biodiversity. Since the farm enterprise is the primary unit of agricultural decision making, management-related effects at the field scale need to be assessed at the farm level. Therefore, in this study, data were collected on habitat characteristics, vascular plant, earthworm, spider, and bee communities and on the corresponding agricultural management in 237 farms in 13 European and two African regions. In 15 environmental and agricultural homogeneous regions, 6–20 farms with the same farm type (e.g., arable crops, grassland, or specific permanent crops) were selected. If available, an equal number of organic and non-organic farms were randomly selected. Alternatively, farms were sampled along a gradient of management intensity. For all selected farms, the entire farmed area was mapped, which resulted in total in the mapping of 11 338 units attributed to 194 standardized habitat types, provided together with additional descriptors. On each farm, one site per available habitat type was randomly selected for species diversity investigations. Species were sampled on 2115 sites and identified to the species level by expert taxonomists. Species lists and abundance estimates are provided for each site and sampling date (one date for plants and earthworms, three dates for spiders and bees). In addition, farmers provided information about their management practices in face-to-face interviews following a standardized questionnaire. Farm management indicators for each farm are available (e.g., nitrogen input, pesticide applications, or energy input). Analyses revealed a positive effect of unproductive areas and a negative effect of intensive management on biodiversity. Communities of the four taxonomic groups strongly differed in their response to habitat characteristics, agricultural management, and regional circumstances. The data has potential for further insights into interactions of farmland biodiversity and agricultural management at site, farm, and regional scale

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam
    corecore